"A back to back Kinoform for X6A"

Kenneth Evans-Lutterodt Vivian Stojanoff Kun Qian Jean Jakoncic NSLS 2/14/11

Outline

- Summary: What we did
- Background
- Quick introduction to kinoform
- Some other things we have done with the kinoform
- Summary

Problem: Imperfect beamlines do not focus well to give small spots; Our solution: Implement a virtual slit using a real slit and a kinoform lens

What the components look like:

Result; Measured spot at sample depends on slit size

150

20 microns spot, __ Limited by measurement

Why can't we use a simpler arrangement like a simple pinhole?

Answer: Given the typical divergence, the pinhole cannot be put close enough.

If $\square \approx 1 \text{mrad}$, $L \approx 0.3 \text{m}$, then $W \approx 300 \text{microns}$

What makes a beamline imperfect?

Mirrors

Consider a mirror with a bump on it

The path length difference caused by bump is $2dsin\theta$

To get a π phase shift bump must be 0.25(\square / \square) \square 25nm

Windows

- Consider a Beryllium window
- To get a π phase shift bump must be 0.5(\square / \square) \square 15microns

A quick introduction to the kinoform

Optical Constants for Hard X-rays

Refractive index $n = 1 - \Box - i\beta$, where • is ~ 10-6 Phase velocity = c/n

Refractive index set by Periodic Table

$$\mathbf{E}(\mathbf{r},t) = \underbrace{\mathbf{E}_0 e^{-i\omega(t-r/c)}}_{\text{vacuum propagation}} \underbrace{e^{-i(2\pi\delta/\lambda)r}}_{\phi\text{-shift}} \underbrace{e^{-(2\pi\beta/\lambda)r}}_{\text{decay}}$$

20 phase shift length
$$t_{2\pi} = \frac{\lambda}{8}$$

Exponential Decay length (Attenuation length)
$$I = \frac{\lambda}{4\pi\beta}$$

Order of magnitude:

For Si, 12keV, t2 (10-10/3x10-6) 30 microns

Absorption limits aperture and resolution

The way around the absorption limitation: Kinoform

Instead of solid refractive optic:

Use a kinoform (lighthouse solution):

The effect of a refractive lens on single phase front

Using graphics instead of equations

The effect of a kinoform lens on single phase front

How it works (graphically)

Lets follow four consecutive phase fronts

How it works (graphically)

For a long wavetrain (narrow bandwidth) it is indistinguishable

Natural match to Micro-fabrication

The amount of material to give a 2 phase shift:

$$\frac{\lambda}{\delta} = \frac{0.1 \text{nm}}{3*10^{-6}} = 30 \mu \text{m}$$

Micro-electronics fabrication techniques will work!

In the old days: Lucent's Electron Beam writer JEOL 9300

Don Tennant

Important Characteristics:

Laser interferometer => Placement accuracy (4nm/500µm) Flexible

Today: E-beam at CFN/BNL and etching at CNF/Cornell

Fabrication Process Flow

Sub-micron spots with >100 micron aperture

- · Figure on right shows a knife edge scan
- Efficiency is greater than 60%

K.E-L et. Al., Optics Express, 11, 919, 2003

And now back to X6A

One more wrinkle for us, the source is not at infinity

Close up view (SEM) of actual back to back kinoform lens

Result; Measured spot at sample depends on to virtual slit size

Some other applications we have had for kinoforms

Diffraction limited performance from a Single Lens

Close to Diffraction limited performance 200micron aperture Sigma = 56nm => FWHM= 2.35σ =131nm

Compound Lens

30.0

knife edge [microns]

30.5

31.0

- ·8 lens array
- Measurement ran out of time, not yet at best focus
- ·Sigma = 25nm (FWHM= 59nm)
- ·Knife edge is 30nm of Cr deposited on Si
- ·So actually the real, de-convolved performance is better!

29.0

exponent = 5.
3rd amplitude = 0
3rd width = 0.
Changencenter = 0
exponent 3rdok = 1

200 └─ 28**.** 5

Diamond Kinoform: fabrication and testing*

Why: Diamond has better transmission than silicon at lower energies

A real diamond lens:

and it works!

(not very well but we know what to do next)
Line focus

*Postdoc Abdel Isakovic will be available

First compound lens to exceed critical angle

^{•&}quot;Using Compound Kinoform Hard-X-Ray Lenses to Exceed the Critical Angle Limit", K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A.Taylor and D.M.Tennant, Phys. Rev. Lett. 99, 134801 (2007)

Solid Refractive

Long Kinoform

Short Kinoform

Focusing at high energies (30 keV)

Image of focused line at 30 keV (Dr Guo) Spot size at x17 is approximately 8 microns

Applications: High Pressure, Temperature study of materials

We can make prisms too

Advantages of diamond for the same lens configuration. I

Source: NIST Tables and cross checked with CXRO <30keV Compton + Photo-electric

A Diamond X-ray Lens!

Abdel Isakovic

John Warren

